A global stochastic optimization particle filter algorithm

نویسندگان

چکیده

Summary We introduce a new online algorithm for expected loglikelihood maximization in situations where the objective function is multimodal or has saddle points. The key element underpinning probability distribution that concentrates on target parameter value as sample size increases and can be efficiently estimated by means of standard particle filter algorithm. This depends learning rate, such faster rate quicker desired search space, but less likely to escape from local optimum function. In order achieve fast convergence with slow our exploits acceleration property averaging, which well known stochastic gradient literature. Considering several challenging estimation problems, numerical experiments show high probability, successfully finds highest mode converges global maximizer at optimal rate. While focus this work maximization, proposed methodology its theory apply more generally optimization defined through an expectation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Particle Swarm Optimization Algorithm for Global Optimization

Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire popu...

متن کامل

Constricted Particle Swarm Optimization based Algorithm for Global Optimization

Particle Swarm Optimization (PSO) is a bioinspired meta-heuristic for solving complex global optimization problems. In standard PSO, the particle swarm frequently gets attracted by suboptimal solutions, causing premature convergence of the algorithm and swarm stagnation. Once the particles have been attracted to a local optimum, they continue the search process within a minuscule region of the ...

متن کامل

A Hybrid Global Optimization Algorithm: Particle Swarm Optimization in Association with a Genetic Algorithm

The genetic algorithm (GA) is an evolutionary optimization algorithm operating based upon reproduction, crossover and mutation. On the other hand, particle swarm optimization (PSO) is a swarm intelligence algorithm functioning by means of inertia weight, learning factors and the mutation probability based upon fuzzy rules. In this paper, particle swarm optimization in association with genetic a...

متن کامل

A Hybrid Global Optimization Algorithm: Particle Swarm Optimization in Association with a Genetic Algorithm

The genetic algorithm (GA) is an evolutionary optimization algorithm operating based upon reproduction, crossover and mutation. On the other hand, particle swarm optimization (PSO) is a swarm intelligence algorithm functioning by means of inertia weight, learning factors and the mutation probability based upon fuzzy rules. In this paper, particle swarm optimization in association with genetic a...

متن کامل

A Hybrid Particle Swarm - Gradient Algorithm for Global Structural Optimization

The particle swarm optimization (PSO) method is an instance of a successful application of the philosophy of bounded rationality and decentralized decision making for solving global optimization problems. A number of advantages with respect to other evolutionary algorithms are attributed to PSO making it a prospective candidate for optimum structural design. The PSO-based algorithm is robust an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrika

سال: 2021

ISSN: ['0006-3444', '1464-3510']

DOI: https://doi.org/10.1093/biomet/asab067